
 Guide to Variance and Data Quality 
Extensions and to Pixel Data Units 

Emma Hogan 

Data Processing Software Group 

V1.0 – 22 June 2012 

 
 

Revision History 
V1.0 – 22 June 2009 Emma Hogan 
 
 

Document ID: DPSG-STD-104_VarianceDQPixelUnits 
 
Document Purpose 
The purpose of the this document is to clearly define variance and data quality, and how they are 
calculated and propagated in the Gemini data reduction software, and to present the rules applies 
to the pixel data and how to keep track of the units of the values stored in those pixels. 
 

Intended Audience 
This document is primarily intended for the developers of the Gemini data reduction software 
suite.  The authors of the user’s manual and the programmer’s manual are expected to use 
elements of this document to explain how the software handles variance, data quality, and units.  
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1. Introduction 
In this document we explain how the variance, data quality flags, and pixel data units are being 
defined and handled in the Gemini data reduction software. 
 



2. Variance 

2.1 Introduction to Variance 

For each pixel in a science extension, a statistical, uncorrelated (random) error can be estimated 
and stored in a corresponding pixel in a variance extension. During each data processing step, 
the variance extension is processed in parallel with the science extension to reflect how the noise 
changes during the processing. Other (systematic) errors are not included in the variance 
extension. 
 
STANDARD DEVIATION: The statistical, uncorrelated (random) errors for the pixels in a science 
extension can be described by the standard deviation, which is a measure of the spread of a 
distribution. The standard deviation has the same units as the pixels in the science extension and 
in the case of a Gaussian distribution, the standard deviation is the "sigma". The initial standard 
deviation for raw pixel data can be estimated using two main components; an estimated read 
noise component and a Poisson noise component. 
 
READ NOISE: The read noise is a consequence of the conversion of electrons in a pixel to 
Analogue-to-Digital Units (ADU) and is a fixed property of the instrument. Detector electronics 
usually do not report one ADU for each electron that is read. The number of ADU corresponding 
to a single electron is known as the detector gain. This is set to a value low enough for the read 
noise to dominate digitisation errors, but high enough to avoid reaching the maximum value of the 
Analogue-to-Digital Converter (ADC) at too small a fraction of the detector full well capacity. The 
estimated read noise affects every pixel independently of the number of electrons in that pixel 
and can be described using the standard deviation of a Gaussian distribution that has a mean of 
zero: 
 

𝑁(𝑚𝑒𝑎𝑛, 𝑠𝑡𝑑𝑑𝑒𝑣) =  𝑁(0, 𝑟𝑒𝑎𝑑𝑛𝑜𝑖𝑠𝑒) 
 
where the read noise is measured in electrons. 
 
POISSON NOISE: The Poisson noise is the standard deviation of a Poisson distribution that 
describes the uncertainty in the counting of electrons in a pixel. Poisson statistics apply to 
electrons, rather than ADU. The Poisson distribution has a distribution parameter that is equal to 
the mean (the expected number of electrons) and the variance. The standard deviation from the 
mean is the square root of the mean. In practice, the standard deviation is estimated using the 
square root of the *measured* number of electrons in that pixel, 𝑁𝑒, since that is what is known: 
 

𝑃𝑜(𝑠𝑡𝑑𝑑𝑒𝑣) =  𝑃𝑜(√𝑁𝑒  ) 

 
CALCULATIONS: Since the read noise and Poisson noise components of the standard deviation 
are uncorrelated (random) noise (i.e., the noise in each pixel is different), they are added in 
quadrature. The central limit theorem is invoked, which allows the the Poisson distribution to be 
approximated to a Gaussian distribution (which is true when the expected number of electrons is 
large). The final product is a Gaussian distribution with the mean and the variance equal to the 
number of electrons in that pixel, 𝑁𝑒:  
 

𝑃𝑜(√𝑁𝑒  ) → 𝑁(𝑚𝑒𝑎𝑛, 𝑠𝑡𝑑𝑑𝑒𝑣) = 𝑁(𝑁𝑒 , √𝑁𝑒  ) 

 
 
 
 
 
 
 



The standard deviations (of the Gaussian distributions) can then be added in quadrature: 
 

𝑁(0, 𝑟𝑒𝑎𝑑𝑛𝑜𝑖𝑠𝑒) +  𝑁(𝑁𝑒 , √𝑁𝑒)  → 

𝑁 (𝑁𝑒 , √𝑟𝑒𝑎𝑑𝑛𝑜𝑖𝑠𝑒2 +  √𝑁𝑒

2
)  →  

𝑁 (𝑁𝑒 , √𝑟𝑒𝑎𝑑𝑛𝑜𝑖𝑠𝑒2 + 𝑁𝑒) 

  
  

𝑠𝑡𝑑𝑑𝑒𝑣[𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠] =  √(𝑟𝑒𝑎𝑑𝑛𝑜𝑖𝑠𝑒[𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠])2 + 𝑁𝑒 

 

𝑠𝑡𝑑𝑑𝑒𝑣[𝐴𝐷𝑈] =  
𝑠𝑡𝑑𝑑𝑒𝑣[𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠]

𝑔𝑎𝑖𝑛
=  √(

𝑟𝑒𝑎𝑑𝑛𝑜𝑖𝑠𝑒[𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠]

𝑔𝑎𝑖𝑛
)

2

+ 
𝑁𝐴𝐷𝑈

𝑔𝑎𝑖𝑛
 

 
 
where the gain is measured in ADU per electron. 
 
A variance extension is stored rather than a standard deviation extension simply because for 
most arithmetic operations on statistical distributions (i.e., they add in quadrature), the equations 
are simpler if the variance is used rather than the standard deviation (since the variance is 
defined as the standard deviation squared, repeated square and root operations are avoided). 
 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝐴𝐷𝑈] =  (
𝑟𝑒𝑎𝑑𝑛𝑜𝑖𝑠𝑒[𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠]

𝑔𝑎𝑖𝑛
)

2

+  
𝑁𝐴𝐷𝑈

𝑔𝑎𝑖𝑛
 

 
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒[𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠] =  (𝑟𝑒𝑎𝑑𝑛𝑜𝑖𝑠𝑒[𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠])2 + 𝑁𝐴𝐷𝑈 

 

2.2 Calculating Initial Variance 

The initial variance should be calculated and added to a dataset as near to the start of the 
processing as possible. The following list contains specific details related to variance coding:  
 

1) The pixel data in the variance extension should always have the same size as the pixel 
data in the science extension. 

2) The read noise component of the variance can be calculated and added to the variance 
extension at any time, but should be done before performing operations with other 
datasets. 

3) The Poisson noise component of the variance can be calculated and added to the 
variance extension only after any bias levels have been subtracted from the pixel data in 
the science extension (due to the large DC bias component on the CCDs). 

4) The variance of a raw bias frame contains only a read noise component (which 
represents the uncertainty in the bias level of each pixel), since the Poisson noise 
component of a bias frame is meaningless. 

5) When the variance is calculated, the units of the pixel data in the science extension 
should be checked so that the variance is calculated in the same units.  The variance can 
be calculated either before or after the pixel data in the science extension is converted to 
electrons.  For more information, see 'Introduction to Pixel Data Units' section below. 

 

2.3 Propagating Variance 

At each reduction step, the variance extension is manipulated according to the operation being 
performed on the science extension. When applying calibrations, the statistical errors from the 
science frame and the statistical errors from the calibration are added in quadrature. Since the 



science frame and the calibration have a variance extension that describe the statistical, 
uncorrelated errors, the variance extensions can simply be added together. The general equation 
for this is: 
 

𝑣𝑎𝑟(𝑓(𝑎, 𝑏)) = (𝑣𝑎𝑟(𝑎) ∗  (
𝜕𝑓

𝜕𝑎
)

2

) +  (𝑣𝑎𝑟(𝑏) ∗  (
𝜕𝑓

𝜕𝑏
)

2

)  + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑡𝑒𝑟𝑚 

 
 
where 𝜕𝑓 𝜕𝑎⁄  and 𝜕𝑓 𝜕𝑏⁄  are partial derivatives. More specific equations are: 
 

𝑣𝑎𝑟( 𝑎 + 𝑏 ) =  𝑣𝑎𝑟(𝑎) +  𝑣𝑎𝑟(𝑏) +  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑡𝑒𝑟𝑚 
𝑣𝑎𝑟( 𝑎 − 𝑏 ) =  𝑣𝑎𝑟(𝑎) +  𝑣𝑎𝑟(𝑏) −  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑡𝑒𝑟𝑚 

 
       𝑣𝑎𝑟( 𝑎 ∗ 𝑏 ) = (𝑣𝑎𝑟(𝑎) ∗  𝑏2) + (𝑣𝑎𝑟(𝑏) ∗  𝑎2) +  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑡𝑒𝑟𝑚 

𝑣𝑎𝑟( 𝑎 ÷ 𝑏 ) = (
𝑣𝑎𝑟(𝑎)

𝑏2
) + (

𝑣𝑎𝑟(𝑏) ∗  𝑎2

𝑏4
) +  𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑡𝑒𝑟𝑚 

 
Since the variance extensions contain only uncorrelated noise, the covariance terms above are 
zero. 
 
When the variable b above is a single value that does not have its own variance, the equations 
can still be used (the variance for a is scaled accordingly). 
 
When average combining frames that have variance extensions, the equations can still be used 
(the variance of the average combined frame is reduced and is equal to the sum of the variance 
of the individual frames divided by N^2, where N is the number of frames contributing to the 
combined frame). If the variance extensions just contain the read noise, then for the case of N 
average combined frames, the read noise will decrease by a factor of sqrt(N) (assuming that the 
read noise in all frames are the same): 
 

𝑣𝑎𝑟(𝑎) =  𝑟𝑒𝑎𝑑𝑛𝑜𝑖𝑠𝑒2 = 𝑣𝑎𝑟(𝑏) = 𝑣𝑎𝑟(𝑐) … 
 

𝑣𝑎𝑟(𝑁) =  
𝑁 ∗  𝑟𝑒𝑎𝑑𝑛𝑜𝑖𝑠𝑒2

𝑁2
=  

𝑟𝑒𝑎𝑑𝑛𝑜𝑖𝑠𝑒2

𝑁
 

 

𝑠𝑡𝑑𝑑𝑒𝑣(𝑁) =  √𝑣𝑎𝑟(𝑁) =  
𝑟𝑒𝑎𝑑𝑛𝑜𝑖𝑠𝑒

√𝑁
 

 
  
When median combining frames that have variance extensions, the equations cannot be used. 
The median of a Poisson distribution is ~ [mean + 1/3 - 0.02/mean] 
(http://en.wikipedia.org/wiki/Poisson_distribution). Therefore, the variance of the median 
combined frame is TBD. 
 
The following list contains specific details related to variance propagation coding: 
 

1) The uncertainty in a measurement that is equal for all pixels in a dataset is defined as 
correlated noise and should not be included when propagating the variance. 

2) If either the calibration frame or the science frame does not have a variance extension, 
no variance is propagated. 

 
At the end of the complete data reduction process, the variance propagation  allows the final 
noise values to be estimated just by taking the square root of the final variance extension. 



3. Data Quality 

3.1 Introduction to Data Quality 

A data quality extension provides a way to flag and track information about the quality of the 
pixels that are present in the pixel data of the associated science extension. The adopted 
encoding for the pixel data in the data quality extension are as follows: 
 
0 Good pixel 
1 Detector defect causing a bad pixel (hot or dead) 
2 Non-linear regime (may not be used for all instruments) 
4 Saturated 
8 Cosmic-ray-hit. This is typically identified as part of a co-adding procedure and will mostly 

be used by tasks like imcoadd. 
16 No data. Pixels that contain no data include those that are in the gaps between the arrays 

in GMOS and GSAOI. This bit value will also be used by, e.g., imcoadd to flag areas of the 
final image for which no data are available. This will be the case if the dithering pattern 
does not give full coverage of the output image. 

32 Contaminated by overlap. Pixels that are contaminated by overlap are those that contain 
data from other MOS or IFU slits. 

64 Unilluminated. Pixels that are unilluminated include those that are off the edge of the 
imaging field in data from instruments such as GMOS and FLAMINGOS-2, and between 
the slits along the spatial axis. 

 
[The first six values and descriptions were taken from 
http://internal.gemini.edu/science/dataProc/Docs/gemini_DQ.txt. The last two values and 
descriptions were added in June 2012 by the DPSG group]. 
 
Additional numeric bit values will be allocated in bit-order as they are required. Therefore, for a 
16-bit data quality extension, a further 9 numeric bit values are available. If more bit values are 
required, the data quality extensions can be seamlessly expanded to 32-bit. 
 
In the Gemini Python package, names are associated to each numeric bit value so that the 
values can be referred to by name rather than the numeric bit value directly. These names are 
defined in a single file and allows the numeric bit values to be changed conveniently, if desired 
(and also enables the possibility to accommodate multiple conventions): 
 
0 DQ_good 
1 DQ_bad_pixel 
2 DQ_non_linear 
4 DQ_saturated 
8 DQ_cosmic_ray 
16 DQ_no_data 
32 DQ_overlap 
64 DQ_unilluminated 
 
 
The data quality encodings will be grouped depending on the severity of the reason the pixel was 
flagged. These data quality group names will also be defined in the single file mentioned 
previously and will have numeric values equal to the bitwise OR of the bit values in that group:  
 
DQ_pass = DQ_good == 0 
DQ_usable = (DQ_non_linear | DQ_overlap | DQ_unilluminated) 
DQ_fail = (DQ_bad_pixel | DQ_saturated | DQ_cosmic_ray | DQ_no_data) 
 
The data quality encodings that belong in the DQ_fail group refer to pixels in the science 



extensions that are almost certainly completely useless and should never be used during 
processing, while those that belong in the DQ_usable group refer to pixels in the science 
extensions that can be used for most purposes, but carry warnings. For example, unilluminated 
pixels can give an indication of the background level, but it is unlikely that those pixels would be 
used during processing. 
 

3.2 Calculating Initial Data Quality 

The initial data quality should be calculated and added to the dataset as near to the start of the 
processing as possible. The following list contains specific details related to data quality coding: 
 

1) The data quality extension should be a 16-bit fits extension. 
2) The pixel data in the data quality extension should always have the same size as the 

pixel data in the science extension. 
3) Bad pixels are flagged in the data quality extension using a bad pixel mask (BPM). 

Generally, BPMs do not include any overscan regions. 
4) Non-linear and saturated pixels are flagged in the data quality extension using the 

non_linear_level and saturated_level descriptors. These pixels should be flagged before 
any bias levels are subtracted (since the hard saturation level for GMOS is the ADC cut 
off, not full well). Non-linear and saturated pixels are flagged in any overscan regions. 

5) A description of the numeric bit values, the names and the data quality groups used as 
described above should be written to the COMMENT headers of the data quality 
extensions. This ensures that the values used in a given data quality extension are fully 
defined and associated with that data quality extension, providing a user all the 
information they need to interpret the data quality extension. 

 

3.3 Propagating Data Quality 

When processing frames that contain data quality extensions (e.g., when applying a calibration 
frame that contains a data quality extension or when combining science frames that contain data 
quality extensions), the pixel data in the data quality extensions should be propagated by 
combining the pixels with a bitwise OR, except in the special cases as described below. This 
allows a pixel in the data quality extension to contain information about multiple problems with the 
associated pixels in any frame that contributed to that pixel. For example: 
 

0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 1000 
16 10000 

 
 

0001 OR 0010  = 0011 
0001 OR 0001  = 0001 

 
The following list contains specific details related to data quality propagation coding: 
 

1) If either the calibration frame or the science frame does not have a data quality 
extension, no data quality information is propagated. 

2) The data quality extension should be used whenever possible to mask bad pixels when 



processing the science extension. 

 When performing certain processing steps on the science extension, data with 
specific numeric bit values may be used. 

 The option to include data with certain numeric bit values should be made 
available to the user (in principle, it should be possible to choose for each 
operation what is considered good and what is considered bad). 

3) When combining data, pixels in the DQ_fail group should never be propagated. 

 If all input pixels for a given output pixel belong in the DQ_fail group, the output 
pixel in the output data quality extension should be flagged as DQ_no_data. 

 If all input pixels for a given output pixel are flagged in their respective data 
quality extensions, but some of the pixels are flagged DQ_usable, the 
DQ_usable pixels should be combined to produce the output pixel in the output 
science extension and the corresponding output pixel in the output data quality 
extension should be flagged with the appropriate bit value (following the 
philosophy that it is better to have usable data than no data). 

 If one input pixel for a given output pixel is flagged DQ_good and more than one 
input pixel is flagged DQ_usable, the single good pixel will be used as the output 
pixel in the output science extension (pixels should only be combined with other 
pixels that have a data quality flag no worse than theirs) [should there be an 
option to use the multiple DQ_usable pixels instead of the single good pixel?] 

 
 

4. Pixel Data Units 

4.1 Introduction to Pixel Data Units 

Pixel data can have units of either ADU or electrons. The BUNIT keyword is used to store this 
unit information. The following list contains specific details related to pixel data unit coding: 
 

1) The BUNIT keyword in the science extension should have a value of either "adu" or 
"electron", the BUNIT keyword in the variance extension should have a value of either 
"adu*adu" or "electron*electron" and there should be no BUNIT keyword in the DQ 
extensions (since a bit mask does not have units). 

 STScI use "electrons", so the recipe system should recognise both "electron" and 
"electrons" as "electron". 

2) The BUNIT keyword is added to the science extension by standardizeHeaders (it is 
assumed that raw pixel data are in ADU) and is updated when the pixel data is converted 
to electrons. 

 The GAIN keyword should *not* be updated or changed when the pixel data is 
converted to electrons (changing the GAIN to be equal to 1 after converting the 
pixel data to electrons just so that the variance equation in ADU still works is not 
the "right thing to do"). 

3) Pixel data should not be converted to electrons until after any bias levels have been 
subtracted (nod-and-shuffle TBD). 

4) The user level functions check the units of the pixel data in the science extension (via the 
BUNIT keyword) and whether any processing has (or hasn't) been done that would 
invalidate the variance calculation. 

 The user level functions should print a warning if the Poisson noise component is 
added to the variance extension of a bias frame. 

 The user level functions should print a warning if the Poisson noise component is 
added to the variance extension of a science frame that still contains a bias level. 

 



4.2 Calibrations 

1) Calibrations should only be retrieved if the pixel data in the calibration has the same units 
as the pixel data in the science frame. 

 The user level functions should print a warning if a user tries to apply a 
calibration that has different units to the pixel data in the science frame. 

2) Processed bias frames are stored in units of ADU. 

 The processing of bias frames should be done in ADU. 
3) Processed dark frames are stored in units of electrons. 
4) Processed, normalized flat frames are unitless. Therefore BUNIT should be set to "" in 

the science and variance extensions in the dataset during the normalize step. 
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